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ABSTRACT

To stop the coronavirus spread, new inactivation approaches
are being sought that can also be applied in the presence of
humans or even on humans. Here, we investigate the effect of
visible violet light with a wavelength of 405 nm on the coron-
avirus surrogate phi6 in two aqueous solutions that are free
of photosensitizers. A dose of 1300 J cm�2 of 405 nm irradia-
tion reduces the phi6 plaque-forming unit concentration by
three log-levels. The next step should be similar visible light
photoinactivation investigations on coronaviruses, which can-
not be performed in our lab.

INTRODUCTION
The new severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which causes the severe lung infection Covid-19
and which was first diagnosed in December 2019 in Wuhan
China, is still spreading worldwide, with almost 19 million con-
firmed infections and more than 700 000 deaths until August
2020 (1).

To reduce the risk of infection, potentially contaminated
goods are successfully disinfected with chemical disinfectants as
well as heat and ultraviolet radiation (2–7). However, these pro-
ven techniques have the disadvantage of damaging sensitive
materials and human cells and can therefore not be applied
directly on humans.

In contrast to ultraviolet radiation, visible blue and violet light
is much less dangerous to humans but has shown an antimicro-
bial effect in experiments on bacteria and fungi (8,9). This is
explained by endogenous photosensitizers such as porphyrins
and flavins, which absorb visible light and subsequently produce
reactive oxygen species like 1O2, OH and H2O2 that destroy the
cells from within (10–19).

For viruses, there are very few publications on this subject.
Richardson and Porter observed inactivation of the ssRNA mur-
eine leukemia virus – apparently in a nutrient medium - by violet
light of a white fluorescence lamp (20). In 2014 Tomb et al. (21)
investigated the inactivation of phiC31, a nonenveloped, double-
stranded DNA virus, by 405 nm irradiation. The authors

observed a successful reduction of viruses in nutrient media, but
almost no inactivation in phosphate-buffered saline (PBS). Fur-
ther studies were performed on feline calicivirus, a nonenveloped
RNA virus (22), with similar results: virus reduction was
observed in irradiated organically rich media, which probably
contained photosensitizers. In 1966, Cartwright et al. (23)
reported a kind of accidental experiment in the summer month of
June, in which medium, containing coronaviruses (Transmissible
Gastroenteritis Virus), was unintentionally exposed to sunlight
for one day. The authors observed a virus reduction by 2 log-
levels, but it is unclear whether this effect was caused by photo-
sensitizers in the medium and the intensity as well as spectral
composition of the daylight is also unknown.

Besides this “accident”, the inactivating effect of visible light
on coronaviruses has not yet been specifically investigated. How-
ever, this would be of particular interest with regard to the coro-
navirus pandemic because visible light could not only be applied
as a gentle disinfection technique, but could even be considered
for therapeutic application in or on humans. Similar approaches
have been suggested or even tried for bacterial infections
(10,24–26).

Due to the security level of the available laboratory for this
study, experiments on coronaviruses are not possible. Instead,
visible light illumination experiments were carried out with the
bacteriophage phi6, a member of the Cystoviridae (27). Phi6 is
an enveloped dsRNA virus (28), with a RNA genome of
13.5 kbp and a size of 75 nm (29), which multiplies in Pseu-
domonas syringae strains. Phi6 has already been discussed as a
useful surrogate for enveloped viruses, such as coronaviruses
(approx. 30 kb ssRNA, size 100�150 nm). In studies on ultravi-
olet radiation inactivation (30,31), temperature and humidity
properties (32), recovery from hands (33), and persistence in
water, sewage or on surfaces (34–37) phi6 results were usually
within the range of published results of different coronaviruses.
Additionally, phi6 has also been suggested as surrogate for
enveloped human viruses in visible light photodynamic inactiva-
tion (with additional photosensitizers) though without performing
a direct comparison to coronaviruses (38) and in their review
Costa et al. (39) conclude that the photodynamic inactivation
mechanisms in mammalian viruses and bacteriophages are simi-
lar and therefore phages can be employed as useful surrogates in
this kind of application.

It should be emphasized that the present virus irradiation exper-
iments were not conducted in nutrient medium, but in phosphate-
buffered saline (PBS) and saline magnesium gelatin buffer (SMG)
to exclude a possible influence of external photosensitizers.
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MATERIALS AND METHODS
Bacteriophage phi6 (DSM 21518) and its host Pseudomonas syringae
(DSM 21482) were purchased from Leibniz-Institute DSMZ, Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH
(Braunschweig, Germany). P. syringae was propagated in Tryptic Soy
Broth (TSB, Sigma-Aldrich, St. Louis, USA). For preparation of host
cells, 25 mL of TSB were inoculated with a single bacterial colony and
the culture was grown overnight at 170 rpm and 25°C in order to obtain
an optical density at 600 nm of 0.20–0.25. This was equal to 1–
5 9 108 colony-forming units (CFU) mL�1.

A high titer phage stock solution (109 plaque-forming units
(PFU) mL�1) was prepared by plate lysis and elution (40). Briefly,
105 PFU of phi6 in SMG buffer (50 mM Tris-HCl pH 7.5, 0.1 M NaCl,
8.1 mM MgSO4, 0.01% (w/v) gelatin) were mixed with 100 µL of an
overnight culture of the host bacterium P. syringae, incubated for 10 min
at 25°C to allow the phages to attach to the cells, subsequently mixed
with 3 mL of sterile soft agar (TSB with 0.6% agar, Agar Bacteriologi-
cal, VWR, Darmstadt, Germany), which was kept melted in a water bath
at 48°C, and poured onto the center of a TSB agar plate (20 mL TSB
with 1.5% agar in a 90 mm Petri dish). After incubation for 18 h at
25°C and confluent lysis, 5 mL of SMG buffer were added onto the
plate, and the plate was stored on a platform shaker (Duomax 1030, Hei-
dolph Instruments, Schwabach, Germany) for 40 min with slow agitation.
The lysate was transferred into a sterile tube, centrifuged at 4000 g (Mul-
tifuge 3S-R, Heraeus, Hanau, Germany) for 10 min at 4°C, and the
supernatant was filtered through a cellulose acetate membrane with a
0.2 lm pore size (VWR, Darmstadt, Germany) to remove bacterial deb-
ris. The phage stock was stored at 4°C for further experiments.

The illumination setup is described in detail in (41). A high power
405 nm LED type LZ4-40UB00-00U8 (LED Engin, Inc., San Jose,
USA) on top of a truncated reflective pyramid homogeneously irradiated
the phi6 containing sample, 107 PFU mL�1 in 3 mL of PBS (137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 pH 7.1) or SMG,
inside a 5 mL beaker in a 20°C water bath with increasing doses. The
irradiation intensity was 78.6 mW cm�2 and aliquots (100 µL) were
taken after t = 0, 1.5, 3, and 4.5 h of incubation, corresponding to flu-
ences of 0, 424, 848, and 1272 J cm�2. Control samples were kept under
normal laboratory lighting conditions in a water bath, whose temperature
was continuously adjusted to that of the irradiated samples in order to
exclude any temperature effects. Postexposure, the number of active
phages was determined using the double agar overlay plaque assay (42):
100, and 200 µL of sequentially diluted phi6 samples in SMG, 100 µL
of host bacteria P. syringae, and 3 mL of soft agar were mixed and pla-
ted over TSB agar plates. Plaques were counted after incubation for 24 h
at 25°C and phage concentration was expressed in PFU mL�1. At each
sampling time point, three technical replicates were measured, and at
least three independent experiments were performed for each condition.

RESULTS AND DISCUSSION
Example photographs of plaques formed in double agar overlay
in a series of phi6 photoinactivation experiments are presented in
Fig. 1. The subsequently calculated survival rate of phi6 is given
as the ratio of the virus concentration in the irradiated sample at
time t to the initial concentration at time zero, and is expressed
as relative PFU mL�1 in Fig. 2. A three log-level reduction was
obtained by a dose of approximately 1300 J cm�2. With the
assumption of a mono-exponential behavior, this means that the
dose for one log-reduction is about 430 J cm�2.

Phi6 is assumed to consist of RNA, proteins and phospho-
lipids (43–45). These molecules are potential targets for viral
photodynamic inactivation (46), but there is no direct hint of the
existence of endogenous photosensitizers, and so we can only
speculate about a possible inactivation mechanism that would fit
to the so far obtained results:

It is known that bacteriophages, including phi6, can be inacti-
vated by external photosensitizers during the illumination with
visible light. Reactive oxygen species (ROS) are generated under

irradiation and known to attack envelope, proteins, and nucleic
acids (39,38). This is in good agreement with the results of Tomb
et al. (22,21), who observed a stronger photoinactivation effect,
when performing the irradiation in organically rich media or in
media with increased photosensitizer (porphyrin) concentration.

In our experiments, we even employed two buffers (PBS and
SMG) to be sure of the absence of external photosensitizer, so it
cannot be exactly the same mechanism but maybe it is similar:
Pseudomonads (phi6 host cells) are known to be sensitive to
405 nm irradiation, which is assumed to be caused by endoge-
nous photosensitizers like porphyrins (47,14). These photosensi-
tizers might have been carried along with the host´s membrane
when building the phi6 envelope and now cause the ROS gener-
ation and the resulting photosensitivity.

Something similar could happen to coronaviruses. Human
cells (coronavirus host cells) also contain photosensitizers like
porphyrins, flavins, NADH and others (48–51), which might be
incorporated in the coronavirus envelope and lead to a photosen-
sitivity toward visible light.

The observed phi6 log-reduction dose of about 430 J cm�2

does not seem to be unreasonable. In their phiC31 photoinactiva-
tion study, Tomb et al. (21) observed a weak virus reduction of
about 0.33 log-levels for 300 J cm�2 in PBS, which would cor-
respond to 900 J cm�2 for a one log-reduction. Given the fact
that phiC31 is a nonenveloped dsDNA virus and phi6 an

Figure 1. Plaques formed by phi6 in the double agar overlay after 0,
1.5, 3, 4.5 h of incubation without or with 405 nm irradiation. (Phage-
suspension was sequentially diluted as indicated.)
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enveloped RNA virus and enveloped viruses are usually more
sensitive (39), the difference seems to be realistic. The much
lower log-reduction doses for phiC31 and feline calcivirus in
organically rich media (21,22) can be explained as the result of
external photosensitizers in the medium.

Summarized, violet 405 nm irradiation is capable of inactivat-
ing the enveloped RNA virus phi6 without addition of photosen-
sitizers. This gives reason to hope that coronaviruses can also be
inactivated by light, but corresponding investigations must be
performed in a laboratory with a higher safety clearance.

If this assumption is confirmed, visible light can not only be
used to gently reduce pathogens in materials, surfaces or rooms,
but one can also speculate whether there are also potential thera-
peutic approaches to reduce the viral load in the body. Human
cells contain the above-mentioned endogenous photosensitizers
such as porphyrins and flavins, which may reduce coronaviruses
substantially at lower irradiation doses.

Study limitations: These results have been obtained for phi6,
which has proven to be a useful coronavirus surrogate for many
different applications but so far, photoinactivation with visible
light (without additional photosensitizers) has not been among
them. Therefore, photoinactivation results on coronaviruses might
differ. Nevertheless, among the previously published virus pho-
toinactivation studies, these results on phi6 – the first 405 nm
photoinactivation experiments with an enveloped RNA virus -
might provide the best available approximation to future coron-
avirus results.
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